BASICS of MOBILE ROBOTICS o Introduction

Prof. Francesco Mondada

What is a Mobile Robot? Definition for this course

Definitions: not a clear consensus

- A machine that senses, thinks, and acts. (G.A. Bekey, 2005) What does "think" mean?
- Oxford English Dictionary: "A machine capable of carrying out a complex series of actions automatically, especially one programmable by a computer." What does "complex" mean?

Robots that are not "mobile" will not be tackled in this course, e.g.:

- Industrial robots
- Torsos
- Prostheses

What Kind of Mobile Robots?

Wheeled Robots

Thymio (EPFL)

Roomba (iRobot)

Uranus (CMU)

Walking and Running Robots

BigDog (Boston Dynamics)

Asimo (Honda, Japan)

Lobster robot (U of Northeastern USA)

Flying Robots

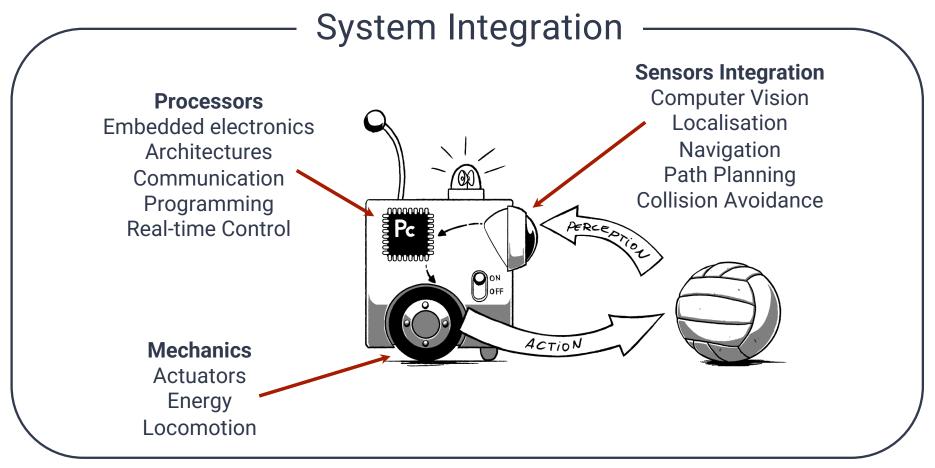
Hummingbird (AeroVironment)

Dragon fly (WowWee HK)

Micro aerial vehicle, Harvard

Swimming and Crawling Robots

G6 Fish Robot, University of Essex



Penguin Robot (Festo, Germany)

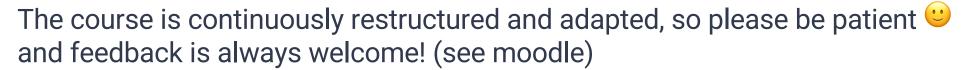
Snake Robot (CMU, USA)

Aspects of Mobile Robotics

Course Objectives

- 1. Get an overview of the mainstream engineering techniques involved in mobile robot development.
- 2. Get a deeper understanding of a subset of techniques, presented more in detail in the course, addressed in the exercises and revised in the case studies.
- 3. Acquire hands-on experience in mobile robotics by means of practical laboratories on a real robot and a graded project.
- 4. Acquire transversal skills in group work.
- 5. Learn to use chatbots as supporting tools.
- 6. It's not the destination, it's the journey that matters.

Course Topics (with project)


Week 1	Components of a mobile robot	Week 8	Uncertainties (+ team building)
Week 2	Vision	Week 9	Localisation 2 + Project week 1
Week 3	Vision & ANN & ML	Week 10	Project week 2
Week 4	Navigation	Week 11	Project week 3 + group work check
Week 5	Navigation + chatbot	Week 12	Project week 4 + Project presentations
Week 6	Localisation 1 (+ team survey)	Week 13	Project presentations + group debriefing
Week 7	Uncertainties + chatbot	Week 14	Project presentations + Conclusion + Mock Exam

Week of holidays between week 6 and 7

Weekly Course Organisation

- ◆ 15:15-16:00 **Case studies** on the topics seen and trained the week before
- **❖** 16:15-17:00 **Lecture (zoom connection available)**
 - One global topic
 - An overview on several techniques related to the topic
 - Some techniques in more detail
 - When needed, one numerical example
- 17:00-19:00 **Exercises + project** (in presence, compulsory) with Python and the Thymio robot. Assignments on Moodle

https://moodle.epfl.ch/course/view.php?id=15293

Course Organisation

Slides + video on Moodle: https://moodle.epfl.ch/course/view.php?id=15293

Enrollment: automatic self-enrolment.

Feedback: every week on moodle, anonymous

Case studies: slides presenting the cases on moodle, interactive discussion

Exercises: every week on moodle, solution published Friday morning

Project: last part of the semester replacing the exercises

Thymio robot: one for each student for the whole semester

Course Organisation

Thymio robot : in the past we asked a 50CHF retainer and we lost money and robots. We will not do that anymore.

We apply a simple rule:

- normally the project grade is published ASAP after the project defenses.
- This year we will not publish the grades until ALL Thymio are back, but we will
 publish the names of students not returning Thymio.

Distribution of Thymios during the exercises of week 1.

Course Material

References:

- Mobile Robots Course EPFL J.-C. Zufferey, Felix Schill, 2013
- Introduction to Autonomous Mobile Robots R. Siegwart, I. Nourbakhsh, and D. Scaramuzza, MIT Press, 2011.
- Elements of Robotics, M. Ben-Ari, F. Mondada, Springer, 2018. (free download!)
- Autonomous Robots: From Biological Inspiration to Implementation and Control G.A. Bekey, MIT Press, 2005.
- Probabilistic Robotics S. Thrun, W. Burgard and D. Fox, MIT Press, 2005.
- Springer Handbook of Robotics B. Siciliano, and O. Khatib (Eds.), 2nd edition, Springer, 2016.

2. Course Objectives & Organisation 12

Control theory if you missed it until now

"Control systems + TP" by Colin Jones, on EPFL moodle (lessons 1 to 3 and 7)

https://moodlearchive.epfl.ch/2021-2022/course/view.php?id=13758

Or: "Control of Mobile Robots" by Prof. Magnus Egerstedt - 1.1 to 1.7

https://www.youtube.com/watch?v=aSwCMK96NOw

https://www.youtube.com/watch?v=Nb9YPyVTNgs

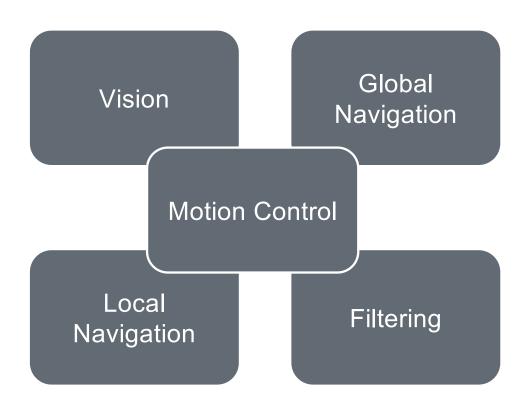
https://www.youtube.com/watch?v=yyE0Y9wvmlw

https://www.youtube.com/watch?v=n_N9HS0JY6Q

https://www.youtube.com/watch?v=DJuo9kLdr4M

https://www.youtube.com/watch?v=cQhqx65kLfM

https://www.youtube.com/watch?v=Mk1ygHj4zxw


Evaluation

In 2 parts

- ❖ 60% Project on one of the topics seen during the semester + the exercise sessions, in group of 4 people (in presence, compulsory!)
- ❖ 40% Written (digital) exam during the winter examination session.
 Composed of 10 case studies (multiple choice answer + explanation)

Project Information

- Groups of 4 students (randomized!) created in week 8
- 4 weeks without exercise sessions (weeks 9-12) to work on it, note that there will be a full lecture week 9 and a case study week 10.
- TAs available from 17:15 19:00 on Tuesdays
- Please use the forum, to allow everybody to benefit from the response.
- Training / development of group working skills
- Presentation of the project in weeks 12 to 14

Components that are required for the project

Examples from Autumn 2019-2020

https://www.youtube.com/watch?v=UDhiHIIIJEQ

Core Robotics Labs at EPFL (robotics.epfl.ch)

STI-LIS (Prof. D. Floreano): Flying robots, swarm robotics, bio-inspired A.I.

STI-LASA (Prof. A. Billard): Machine learning, imitation, humanoids

STI-BioRob (Prof. A. Ijspeert): Bio-inspired locomotion, biomedical robotics, industrial robotics

STI-Mobots (Prof. F. Mondada): Robot design, miniature mobile robots, educational robotics

STI-RRL (Prof. J. Paik): Robot design, foldable robots

STI-MICROBS (Prof. S. Sakar): Microrobotics

STI-MICROBS (Prof. M. Sakar): MicroBioRobotic Systems Laboratory

STI-CREATE (Prof. J. Hughes): fabrication and computational design tools

ENAC-DISAL (Prof. A. Martinoli): Collective systems

ENAC-VITA (Prof. A. Alahi): Visual Intelligence for transportation

IC-VILAB (Prof. A. Zamir): computer vision, machine learning, and AI <-> robotics